Total Count

Subscribe Us

वायुमंडल किसे कहते है और उसके प्रकार ?|What is atmosphere and its types?

 


वायुमंडल (Atmosphere)

    पृथ्वी को चारों ओर से घेरे हुए वायु के विस्तृत फैलाव को पृथ्‍वी का वायुमंडल (Earth atmosphere) कहते हैं. वायुमंडल की ऊपरी परत के अध्ययन को वायुविज्ञान (Aerology) और निचली परत के अध्ययन को ऋतु विज्ञान (Meterology) कहते हैं. आयतन के अनुसार वायुमंडल में 30 मील के अंदर विभिन्न गैसों का मिश्रण होता है जो इस प्रकार हैं- नाइट्रोजन 78.07 फीसदी, ऑक्सिजन 20.93 फीसदी, कॉर्बन डाईऑक्साइड .03 फीसदी और आर्गन .93 फीसदी.

1. नाइट्रोजन: इस गैस की प्रतिशत मात्रा सभी गैसों से अधिक हैं. नाइट्रोजन की उपस्थिति के कारण ही वायुदाब, पवनों की शक्ति और प्रकाश के परावर्तन का आभास होता है. इस गैस का कोई रंग, गंध या स्वाद नहीं होता. नाइट्रोजन का सबसे बड़ा लाभ यह है कि यह वस्तुओं को तेजी से जलने से बचाती है. अगर वायुमंडल में नाइट्रोजन ना होती तो आग पर नियंत्रण रखना कठिन हो जाता. नाइट्रोजन से पेड़-पौधों में प्रोटीनों का निर्माण होता है, जो भोजन का मुख्य का अंग है. यह गैस वायुमंडल में 128 किलोमीटर की ऊंचाई तक फैली हुई है.

2. ऑक्सिजन-: यह अन्य पदार्थों के साथ मिलकर जलने का कार्य करती है. ऑक्सिजन के अभाव में हम ईधन नहीं जला सकते. यह ऊर्जा का मुख्य स्त्रोत है. यह गैस वायुमंडल में 64 किलोमीटर की ऊंचाई तक फैली हुई है, पर 16 किलोमीटर से ऊपर जाकर इसकी मात्रा बहुत कम हो जाती है.

3. कार्बन-डाई-ऑक्साइड-यह सबसे भारी गैस है और इस कारण यह सबसे निचली परत में मिलती है फिर भी इसका विस्तार 32 किमी की ऊंचाई तक है. यह गैस सूर्य से आने वाली विकिरण के लिए पारगम्य और पृथ्वी से परावर्तित होने वाले विकिरण के लिए अपारगम्य है.

4. ओजोन- : यह गैस ऑक्सिजन का ही एक विशेष रूप है. यह वायुमंडल में अधिक ऊंचाइयों पर ही अति न्यून मात्रा में मिलती है. यह सूर्य से आने वाली तेज पराबैंगनी विकिरण (Ultraviolet Radiations) के कुछ अंश को अवशोषित कर लेती है. यह 10 से 50 किमी की ऊंचाई तक केंद्रित है. वायुमंडल में ओजोन गैस की मात्रा में कमी होने से सूर्य की पराबैंगनी विकरण अधिक मात्रा में पृथ्वी पर पहुंच कर कैंसर जैसी भयानक बीमारियां फैला सकती हैं.

5. जलवाष्प वायुमंडल में आयतानुसार 4% जलवाष्प की मात्र सदैव विद्दमान रहती है. जलवाष्प की सर्वाधिक मात्र भूमध्य रेखा के आसपास और न्यूनतम मात्र ध्रुवों के आसपास होती है. भूमि से 5 किमी. तक के ऊंचाई वाले वायुमंडल में समस्त जलवाष्प का 90% भाग होता है. जलवाष्प सभी प्रकार के संघनन एवं वर्षण सम्बन्धी मौसमी घटनाओं के लिए जिम्मेदार होती है. ज्ञातव्य है कि वायुमंडल में जलमंडल का 0.001 % भाग सुरक्षित रहता है.

वायुमंडल की संरचना

वायुमंडल की संरचना के सम्बन्ध में 20वीं शताब्दी में विशेष अध्ययन किये गए हैं. इस दिशा में तिज्रांस-डि-बोर, सर नेपियर शाॅ, फ्रैडले, कैनली, फेरेब आदि वैज्ञानिकों का विशेष योगदान रहा है. तापमान के उर्ध्वाधर वितरण के आधार पर वायुमंडल के प्रमुख परतें (important layers) निम्नलिखित हैं – –


  • ट्रोपोस्फीयर/विक्षोभ प्रदेश/Troposphere नामक शब्द का प्रयोग तिज्रांस-डि-बोर ने सर्वप्रथम किया था.
  • वायुमंडल की इस सबसे नीचली परत (bottom layer) का भार सम्पूर्ण वायुमंडल का लगभग 15% है.
  • धरातल से इस परत की औसत ऊँचाई 10 कि.मी. है. भूमध्य रेखा पर ऊँचाई 18 कि.मी. और ध्रुवों पर 8-10 कि.मी. है.
  • ग्रीष्म ऋतु में इस स्तर की ऊँचाई में वृद्धि और शीतऋतु में कमी पाई जाती है.
  • इस मंडल की प्रमुख विशेषता है प्रति 165 मी. की ऊँचाई पर तापमान में 1 डीग्री सेल्सियस की गिरावट आना. इसमें सर्वाधिक क्षैतिज और लम्बवत तापान्तर होता है.
  • इस भाग में गर्म और शीतल होने का कार्य विकिरण, संचालन और संवहन द्वारा होता है.
  • इस मंडल को परिवर्तन मंडल भी कहते हैं. समस्त मौसमी घटनाएँ भी इसी मंडल में घटित होती हैं.
  • इस मंडल की एक और विशेषता यह है कि इसके भीतर ऊँचाई में वृद्धि के साथ वायुवेग में भी वृद्धि होती है.
  • संवहनी तरंगों तथा विक्षुब्ध संवहन के कारण इस मंडल को कर्म से संवहनी मंडल और विक्षोभ मंडल भी कहते हैं.


  • क्षोभ मंडल और समताप मंडल को अलग करनेवाली 1.5 कि.मी. मोटे संक्रमण को ट्रोपोपॉज या क्षोभ सीमा (tropopause) कहा जाता है.
  • क्षोभ सीमा (tropopause) ऊँचाई के साथ तापमान का गिरना बंद हो जाता है.
  • इसकी ऊँचाई भूमध्य रेखा पर 17-18 कि.मी. (तापमान- 80 डिग्री सेल्सियस) ध्रुवों पर 8-10 कि.मी. (तापमान -45 डिग्री सेल्सियस)


  • क्षोभ सीमा से ऊपर 50 कि.मी. की ऊँचाई तक समताप मंडल का विस्तार है.
  • कुछ विद्वान् ओजोन मंडल को भी इसी में समाहित कर लेते हैं.
  • इस मंडल में तापमान में कोई परिवर्तन नहीं होता और संताप रेखाएँ समानंतर न होकर लम्बवत होते हैं.
  • यहाँ संघनन से विशिष्ट प्रकार के “मुकताभ मेघ” की उत्पत्ति होती है और एवं गिरने वाले बूदों को Noctilucent कहते हैं.
  • इस मंडल की मोटाई ध्रुवों पर सर्वाधिक और विषुवत रेखा पर सबसे कम होती है.
  • शीत ऋतु में 50 डिग्री से 60 डिग्री अक्षाशों के बीच समताप मंडल सर्वाधिक गर्म होता है.
  • यह मंडल मौसमी घटनाओं से मुक्त होता है, इसलिए वायुयान चालकों के लिए उत्तम होता है.
  • 1992 में समताप मंडल (stratosphere) की खोज एवं नामाकरण तिज्रांस-डि-बोर ने किया था.


  • समताप मंडल के नीचले भाग में 15 से 35 कि.मी. के बीच ओजोन गैस (Ozone gas) का मंडल होता है.
  • ओजोन गैस (Ozone gas) सूर्य से निकलने वाली अतिप्त पराबैगनी किरणों (UV rays) को सोख लेती है.
  • इस स्तर में प्रति कि.मी. 5 डिग्री सेल्सियस की दर से तापमान बढ़ता है.
  • इसी अन्य तापमान के कारण वायुमंडल में ध्वनि एवं नीरवता के वाले उत्पन्न होते हैं.
  • वर्तमान में ओजोन पार्ट के क्षरण की समस्या के निवारण के लिए मोंट्रियल प्रोटोकॉल (montreal protocol) एवं अन्य उपायों के जरिये ओजोन क्षरक पदार्थों आर कड़ाई से रोक लगाई जा रही है.


  • 50 से 80 कि.मी. की ऊँचाई वाला वायुमंडलीय भाग मध्य मंडल (mesophere) कहलाता है जिसमें तापमान में ऊँचाई के साथ ह्रास होता है.
  • 80 कि.मी. की ऊँचाई पर तापमान -80 डिग्री सेल्सियस हो जाता है, इस न्यूनतम तापमान की सीमा को “मेसोपास” कहते हैं.


  • धरातल से 80-640 कि.मी. के बीच आयन मंडल का विस्तार है.
  • यहाँ पर अत्यधिक तापमान के कारण अति न्यून दबाव होता है. फलतः पराबैगनी फोटोंस (UV photons) एवं उच्च वेगीय कणों के द्वारा लगातार प्रहार होने से गैसों का आयनन (Ionization) हो जाता है.
  • आकाश का नील वर्ण, सुमेरु ज्योति, कुमेरु ज्योति तथा उल्काओं की चमक एवं ब्रह्मांड किरणों की उपस्थिति इस भाग की विशेषता है.
  • यह मंडल कई आयनीकृत परतों में विभाजित है, जो निन्मलिखित हैं :–
  • i) D का विस्तार 80-96 कि.मी. तक है, यह पार्ट दीर्घ रेडियो तरंगों को परावर्तित करती है.

    ii) E1 परत (E1 layer) 96 से 130 कि.मी. तक और E2 परत 160 कि.मी. तक विस्तृत हैं. E1 और E2 परत मध्यम रेडियो तरंगों को परावर्तित करती है.

    iii) F1 और F2 परतों का विस्तार 160-320 कि.मी. तक है, जो लघु रेडियो तरंगो (radio waves) को परावर्तित करते हैं. इस परत को एप्लीटन परत (appleton layer) भी कहते हैं.

    iv) G परत का विस्तार 400 कि.मी. तक है. इस परत (layer) की उत्पत्ति नाइट्रोजन के परमाणुओं व पराबैगनी फोटोंस (UV photons) की प्रतिक्रिया से होती है.


  • सामान्यतः 640 कि.मी. के ऊपर बाह्य मंडल का विस्तार पाया जाता है.
  • यहाँ पर हाइड्रोजन एवं हीलियम गैसों की प्रधानता है.
  • अद्यतन शोधों के अनुसार यहाँ नाइट्रोजन, ऑक्सीजन, हीलियम तथा
  • हाइड्रोजन की अलग-अलग परतें (different layers) भी होती हैं.
  • लेमन स्पिट्जर ने इस मंडल पर विशेष शोध किया है.


  • सूर्य से पृथ्वी तक पहुँचने वाले सौर विकिरण ऊर्जा को सूर्यातप कहते है यह ऊर्जा लघु तरंगों के रूप में सूर्य से पृथ्वी पर पहुँचती है। वायुमंडल की बाहरी सीमा पर सूर्य से प्रति मिनट प्रति वर्ग सेमी. पर 1.94 कैलोरी ऊष्मा प्राप्त होती है। किसी भी सतह को प्राप्त होनेवाली सूर्यातप की मात्रा एवं उसी सतह से परावर्तित की जाने वाली सूर्यातप की मात्रा के बीच का अनुपात एल्बिडो कहलाता है। सौर विकिरण का यह प्रवर्तन लघु तरंगों में ही होता है।
  • वायुमंडल की बाहरी सीमा पर प्राप्त होने वाले सौर विकिरण का लगभग 32% भाग बादलों की सतह से परावर्तित तथा धूल–कणों से प्रकीर्णित होकर अंतरिक्ष में लौट जाता है। सूर्यातप का लगभग 2% भाग धरातल से परावर्तित होकर अंतरिक्ष में वापस चला जाता है। इस प्रकार सौर विकिरण का 34% भाग धरातल को गर्म करने के काम नही आता। पूर्ण मेघाच्छदं के समय सूर्य के प्रकाश में कमी का मूल कारण परावर्तन होता है, न कि अवशोषण पृथ्वी सौर्यिक विकिरण द्वारा प्रसारित ऊर्जा का 51% भाग प्राप्त करती है। वायुमण्डल सौर्यिक ऊर्जा का केवल 14% ही ग्रहण कर पाता है।


  • 1. विकिरण (Radiation) : किसी पदार्थ को ऊष्मा तरंगों के संचार द्वारा सीधे गर्म होने को विकिरण कहते है। सूर्य से प्राप्त होनेवाली किरणों से पृथ्वी तथा उसका वायुमंडल गर्म होते है। यही एकमात्र ऐसी प्रकिया है, जिससे ऊष्मा बिना किसी माध्यम के, शून्य के होकर भी यात्रा कर सकती है। सूर्य से आने वाली किरणें लघु तरंगों वाली होती है , जो वायुमंडल को बिना अधिक गर्म किये ही उसे पार करके पृथ्वी तक पहुँच जाती है। पृथ्वी पर पहुँची हुई किरणों का बहुत सा भाग पुनः वायुमण्डल में चला जाता है। इसे भौमिक विकिरण कहते है। भौमिक विकिरण अधिक लम्बी तरंगों वाली किरण होती है ,जिसे वायुमण्डल सुगमता से अवशोषत कर लेता है। अतः वायुमंडल सूर्य से आने वाले सौर विकिरण की अपेक्षा भौमिक विकिरण से अधिक गर्म होता है

    2. संचालन (Conduction) : जब असमान ताप वाली दो वस्तुएँ एक दूसरे के संपर्क में आती है, तो अधिक तापमान वाली वस्तु से कम तापमान वाली वस्तु की और ऊष्मा प्रवाहित होती है। ऊष्मा का यह प्रवाह तब तक चलता है जब तक दोनों वस्तुओं का तापमान एक जैसा न हो जाय। वायु ऊष्मा की कुचलक है। अतः संचालन प्रक्रिया वायुमण्डल को गर्म करने के लिए सबसे कम महत्वपूर्ण है। इससे वायुमंडल की केवल निचली परतें ही गर्म होती है।

    3. संवहन (Convection) : किसी गैसीय अथवा तरल पदार्थ के एक भाग से दूसरे भाग की और उसके अणुओं द्वारा ऊष्मा के संचार को संवहन कहते है। यह संचार गैसीय तथा तरल पदार्थों में इसलिय होता है कि क्योंकि उसके अणुओं के बीच का सम्बन्ध कमजोर होता है। यह प्रक्रिया ठोस पदार्थों में नहीं होती है। जब वायुमंडल की निचली परत भौमिक विकिरण अथवा संचलन से गर्म हो जाती है तो उसकी वायु फैलती है। जिससे उसका धनत्व कम हो जाता है। घनत्व कम होने से वह हल्की हो जाती है और ऊपर को उठती है। इस प्रकार वह वायु निचली परतों की ऊष्मा को ऊपर ले जाती है। ऊपर की ठंडी वायु उसका स्थान लेने के लिए नीचे आती है और कुछ देर बाद वह भी गरम हो जाती है। इस प्रकार संवहन प्रक्रिया द्वारा वायुमंडल क्रमश: निचे से ऊपर गर्म होता रहता है। वायुमंडल गर्म होने में यह मुख्य भूमिका निभाता है।

    4. अभिवहन (Advection) : इस प्रक्रिया में ऊष्मा का क्षैतिज दिशा में स्थनांतरण होता है। गर्म वायु राशियाँ जब ठंडे इलाकों में आती है , तो उन्हें गर्म कर देती है। इससे ऊष्मा का संचार निम्न अक्षांशीय क्षेत्रों से उच्च अक्षांशीय क्षेत्रों तक भी होता है। वायु द्वारा संचालित समुंद्री धाराएं भी उच्च कटिबंधों से ध्रुवीय क्षेत्रों में ऊष्मा का संचार करती है। समताप रेखा

    भूमण्डल पर ताप के क्षेतिज वितरण को प्रदर्शित करने के लिए समताप रेखाओं का प्रयोग किया जाता हैं। समताप रेखाएं वे कल्पित रेखाएं हैं जो समान ताप वाले स्थानों को मिलाते हुए खींची जाती हैं। इन्हे खींचने के लिए विभिन्न स्थानो का तापमान ज्ञात किया जाता है, फिर उन स्थानो के तापमानो को सागर तल पर समायोजित किया जाता हैं, अर्थात सभी स्थानों को सागर तल पर मान कर (उंचाई के अन्तर को घटाकर) संशोधित तापमान प्राप्त किए जाते हैं, तत्पश्चार समताप रेखाएं खीची जाती हैं।

    दैनिक तापान्तर:-किसी स्थान के किसी दिन-रात के उच्चतम और निम्नतम तापक्रम के अन्दर को दैनिक तापान्तर (Diurnal or Daily Range of Temperature) कहते हैं. उदाहरणार्थ “क” स्थान का किसी दिन का उच्चतम तापक्रम 102° F है और निम्नतम 80° F तो उसका दैनिक तापान्तर 102°-80°= 22° F हुआ. उच्चतम तापक्रम मध्याह्न के उपरान्त (2 या 3 बजे) और निम्नतम भोर में (लगभग 4 बजे) मिलता है.

    तापान्तर से मतलब किसी स्थान के उच्चतम तापक्रम (temperature) और निम्नतम तापक्रम के अंतर से होता है.

    वार्षिक तापान्तर:-इन दोनों महीनों के औसत तापक्रम के अंतर को वार्षिक तापान्तर (Annual Range of Temperature) कहते हैं. सिर्फ तापान्तर (Rang of Temperature) कहने से भी वार्षिक तापान्तर का अर्थ लिया जाता है. सबसे कम तापान्तर विषुवत् रेखा पर और सबसे अधिक तापान्तर महाद्वीपों के आंतरिक भागों (जैसे मध्य एशिया) में पाया जाता है. जहाँ विषुवत् रेखा पर 5 F° तापान्तर मिलता है, दूसरी तरफ सामुद्रिक प्रभाव से दूर महाद्वीपों के आंतरिक भाग में 100 Fahrenheit तक तापान्तर मिलता है. समुद्र के समीपवर्ती स्थानों में तापान्तर कम होता है.

    वायुमंडलीय दाब, पवन एवं वायुराशियाँ

    वायुदाब:- भूपृष्ठ पर वायुमण्डल के दाब या भार को वायुमण्डलीय दाब या वायुदाब या वायुभार कहते हैं। पृथ्वी के चारों ओर कई सौ किलोमीटर की ऊँचाई तक वायु का आवरण फैला है। वायु के इस आवरण का धरातल पर भारी दबाव पड़ता है। अनुमान लगाया गया है कि समुद्रतल के समीप प्रति वर्ग सेण्टीमीटर भूमि पर 1.25 किलोग्राम वायुदाब होता है। अत: हम सदैव ही 112 किलोग्राम वायु का भार अपने ऊपर लादे फिरते हैं, किन्तु फिर भी हमें वायु का कोई दबाव अनुभव नहीं होता। इसका कारण यह है कि हमारे चारों ओर वायु का दबाव समान रूप से पड़ता है। हम वायु के इस महासागर के नीचे उसी प्रकार रह रहे हैं जैसे कि समुद्र के अन्दर जल-जीव निवास करते हैं।

    समदाब रेखाएँ Isobars:- ये वे कल्पित रेखाएँ हैं जो पृथ्वी के धरातल पर समान वायुदाब वाले स्थानों को जोड़ती हैं। मानचित्रों में वायुदाब इन्हीं रेखाओं द्वारा प्रकट किया जाता है। मानचित्रों में इन रेखाओं को बनाने के पूर्व वायुदाब को सागर तल के वायुदाब में बदल लेते हैं, क्योंकि ऊँचाई के अनुसार वायुदाब कम हो जाता है, अतः यदि किसी स्थान का वायुदाब 650 मिलीबार है और यह सागरतल से 2,750 मीटर ऊँचा है तो उस स्थान का वास्तविक वायुदाब 330 मिलीबार कम है,( ऊपर जाने पर प्रति 100 मीटर पर 12 मिलीबार वायुदाब घटता है) अतः सागरतल पर उसका वायुदाब 980 मिलीबार (650 + 330) होगा।

    विषुवत रेखीय न्यून दाब पेटी Equatorial Low Pressure Belt:- यह विषुवत रेखा के समीप 5° उत्तर और दक्षिण के बीच पायी जाती हैं। यहाँ वर्ष भर सूर्य की किरणे सीधी पड़ने के कारण तापमान ऊँचा रहता है, अतः निम्न वायुदाब पाया जाता है। इस क्षेत्र में गरम भूमि के सम्पर्क से वायु भी गरम हो। जाती है और हल्की होकर ऊपर उठती है तथा वायुमण्डल के ऊपरी स्तरों से ठण्डी वायु पृथ्वी के धरातल पर नीचे उतरती है। इस प्रकार वायुमंडल में संवहन धाराएँ ( convectional currents) उत्पन्न हो जाती हैं। पवन धरातल के समान्तर नहीं चलती। इसी कारण इस क्षेत्र को शान्त खण्ड (Doldrums) भी कहते हैं। यहां दोनों ओर से आने वाली स्थायी पवनों का मिलन या अभिसरण (convergence) होता है, अतः इस मेखला को अन्तः उष्णकटिबन्धीय अभिसरण क्षेत्र (Inter-tropical Convergence zone) भी कहते हैं। इस कटिबन्ध में प्रतिदिन वर्षा होती है अतः इसका भी प्रभाव वायुदाब पर पड़ता है।

    उपोष्ण उच्च वायुदाब पेटियाँ Tropical High Pressure belt:- उत्तरी और दक्षिणी गोलार्द्ध में 30° और 35° अक्षांशों के बीच में उच्च वायुदाब की मेखलाएँ स्थित हैं। वायुदाब की ये मेखलाएँ पृथ्वी की गति के कारण उत्पन्न होती हैं। इन मेखलाओं में वायु सदा ऊपर से नीचे उतरती है, अतः उनका दाव बढ़ जाता है। इन मेखलाओं को अश्व अक्षांश (Horse Latitudes) भी कहा जाता है, क्योंकि मध्ययुग में पालदार जलयानों से यात्रा करते समय अपनेअपने साथ घोड़े, आदि ले इन मेखलाओं में आने पर जलयान शान्त पेटियों के कारण आगे चल नहीं पाते थे, अतः जहाजों का भार हल्का करने के लिए घोड़ों को समुद्र में फेंक दिया करते थे। इस कारण इन मेखलाओं को अश्व अक्षांश कहा जाता है। पवनों की गति अधोमुखी होने के कारण इन कटिबन्धों में पवन संचार बहुत धीमा रहता है, अतः इन कटिबन्धों को शान्त कटिबंध (Belt of Calm) भी कहते हैं।

    उपध्रुवीय न्यून वायुदाब पेटियां Sub Polar Low Pressure Belts:- ये 60° से 66½° के बीच पायी जाती हैं। इनमें न्यून वायुदाब पाया जाता है।

    ध्रुवीय उच्च वायुदाब पेटियाँ Polar High Pressure Belts:- ध्रुव वृतों से ध्रुवों की ओर जाने पर वायुदाब बढ़ता जाता है। ध्रुवों के निकट तो उच्च वायुदाब का एक विशेष क्षेत्र बन जाता है। जिस प्रकार विषुवत् रेखा के निकट न्यून वायुदाब का कारण तापमान की अधिकता है, उसी प्रकार ध्रुवों के समीप उच्च वायुदाब का कारण तापमान की न्यूनता है

    ठहरी हुई वायु (air) को हवा तथा गतिमान वायु को पवन (wind) कहा जाता है, लेकिन सामान्यतः दोनों को एक ही माना जाता है.

    इन पवनों को मुख्य तौर तीन प्रकारों में बांटा जा सकता है. (क.) स्थायी पवनें (Permanent wind) (ख.) दैनिक एवं मौसमी पवनें (Daily and seasonal wind) (ग.) स्थानीय पवनें (Local wind).

    स्थायी पवनें – Permanent wind:- स्थायी पवनें आधारभूत और व्यापक पवन संचार प्रणाली है इन्हें वायुमंडल का प्राथमिक परिसंचरण कहा जाता है. प्रत्यक्ष एवं अप्रत्यक्ष रूप से विभिन्न वायुमंडलीय हलचलें या परिघटना स्थायी पवन से संबंधित है. स्थायी पवनों को प्रचलित पवनें (popular wind) भी कहा जाता है.

    मौसमी पवन एवं दैनिक पवन Seasonal wind & Daily wind:- मौसमी पवन मौसम विशेष में उत्पन्न होने वाली पवन है. यह मौसमी प्रभाव उत्पन्न करते है और मौसम परिवर्तन के साथ समाप्त भी हो जाते है. मौसमी पवनों का क्षेत्र अधिक व्यापक नहीं होता है. यह मुख्यतः दिन एवं रात के तापमान में अंतर के कारण उत्पन्न होती है. दैनिक पवनों को इस श्रेणी में रखा जा सकता है क्योंकि दैनिक पवनों की उत्पत्ति दिन एवं रात में मौसमी परिवर्तन के कारण होती है.

    स्थानीय पवन – Local wind:- Local wind वायुमंडल के विशिष्ट परिसंचरण प्रणाली है. यह मुख्यतः स्थानीय स्तर पर तापमान एवं वायुदाब की विशिष्ट दशाओं के परिणामस्वरूप उत्पन्न होती है. कई विशिष्ट स्थानीय पवनें प्रत्यक्षतः वायुमंडल की द्वितीय परिसंचरण प्रणाली जैसे चक्रवात एवं प्रतिचक्रवात से संबंधित होती है इसी कारण इन्हें वायुमंडल का तृतीय परिसंचरण कहा जाता है.


    अन्य जानकारी